Score and rank properties using intrinsic and spatial features¶
So far we have shortlisted properties based on their intrinsic properties such as number of rooms, price, HoA etc. We have enriched them with spatial attributes such as access to facilities and distance to a point of interest (such as work). In this notebook, we weigh and sum these attributes to produce a score for each property. We finally sort them to pick the top few.
import pandas as pd
import matplotlib.pyplot as plt
from pprint import pprint
%matplotlib inline
import seaborn as sns
from arcgis.gis import GIS
from arcgis.features import Feature, FeatureLayer, FeatureSet, GeoAccessor, GeoSeriesAccessor
gis = GIS(profile='')
Read spatially enriched properties¶
prop_df = pd.read_csv('resources/houses_facility_counts.csv')
prop_df = pd.DataFrame.spatial.from_xy(prop_df, 'LONGITUDE','LATITUDE')
prop_df.head()
SALE TYPE | PROPERTY TYPE | ADDRESS | CITY | STATE | ZIP | PRICE | BEDS | BATHS | LOCATION | ... | hospitals_count | coffee_count | bars_count | gas_count | shops_count | travel_count | parks_count | edu_count | commute_length | commute_duration | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | MLS Listing | Single Family Residential | 144 SE 191st Pl | Portland | OR | 97233.0 | 334900.0 | 4.0 | 2.5 | Gresham, Sandy, Troutdale, Corbett | ... | 0 | 19 | 0 | 28 | 41 | 50 | 50 | 50 | 13.978589 | 25.621265 |
1 | MLS Listing | Single Family Residential | 20028 NE Hoyt St | Portland | OR | 97230.0 | 349950.0 | 3.0 | 2.5 | Reeds Place | ... | 2 | 23 | 0 | 31 | 38 | 50 | 50 | 50 | 13.913465 | 24.726944 |
2 | MLS Listing | Single Family Residential | 711 SE 160th Ave | Portland | OR | 97233.0 | 358999.0 | 4.0 | 2.5 | Portland Southeast | ... | 0 | 16 | 0 | 34 | 47 | 50 | 50 | 50 | 14.644863 | 27.830024 |
3 | MLS Listing | Single Family Residential | 5536 SE 142nd Pl | Portland | OR | 97236.0 | 369800.0 | 4.0 | 2.5 | Portland Southeast | ... | 2 | 18 | 0 | 29 | 45 | 48 | 50 | 50 | 13.097669 | 25.943438 |
4 | MLS Listing | Single Family Residential | 15707 SE Flavel Dr | Portland | OR | 97236.0 | 379900.0 | 3.0 | 2.0 | Portland Southeast | ... | 0 | 13 | 0 | 17 | 44 | 10 | 50 | 41 | 14.254413 | 28.403598 |
5 rows × 35 columns
prop_df.columns
Index(['SALE TYPE', 'PROPERTY TYPE', 'ADDRESS', 'CITY', 'STATE', 'ZIP', 'PRICE', 'BEDS', 'BATHS', 'LOCATION', 'SQUARE FEET', 'LOT SIZE', 'YEAR BUILT', 'DAYS ON MARKET', 'PRICE PER SQFT', 'HOA PER MONTH', 'STATUS', 'URL', 'SOURCE', 'MLS', 'LATITUDE', 'LONGITUDE', 'SHAPE', 'grocery_count', 'restaurant_count', 'hospitals_count', 'coffee_count', 'bars_count', 'gas_count', 'shops_count', 'travel_count', 'parks_count', 'edu_count', 'commute_length', 'commute_duration'], dtype='object')
Drop unnecessary columns
try:
prop_df.drop(columns=['Unnamed: 0'], inplace=True)
prop_df.drop(columns=['Unnamed: 0.1'], inplace=True)
except:
pass
Apply weights¶
In the following section, we determine the relative importance of each attribute and set weights accordingly
def set_scores(row):
score = ((row['PRICE']*-1.5) + # penalize by 1.5 times
(row['BEDS']*1)+
(row['BATHS']*1)+
(row['SQUARE FEET']*1)+
(row['LOT SIZE']*1)+
(row['YEAR BUILT']*1)+
(row['HOA PER MONTH']*-1)+ # penalize by 1 times
(row['grocery_count']*1)+
(row['restaurant_count']*1)+
(row['hospitals_count']*1.5)+ # reward by 1.5 times
(row['coffee_count']*1)+
(row['bars_count']*1)+
(row['shops_count']*1)+
(row['travel_count']*1.5)+ # reward by 1.5 times
(row['parks_count']*1)+
(row['edu_count']*1)+
(row['commute_length']*-1)+ # penalize by 1 times
(row['commute_duration']*-2) # penalize by 2 times
)
return score
Generate scores for all properties¶
We calculate the score for each property using the formula we defined in previous section
%%time
prop_df['scores'] = prop_df.apply(set_scores, axis=1)
CPU times: user 78 ms, sys: 1.98 ms, total: 80 ms Wall time: 101 ms
prop_df.head()
SALE TYPE | PROPERTY TYPE | ADDRESS | CITY | STATE | ZIP | PRICE | BEDS | BATHS | LOCATION | ... | coffee_count | bars_count | gas_count | shops_count | travel_count | parks_count | edu_count | commute_length | commute_duration | scores | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | MLS Listing | Single Family Residential | 144 SE 191st Pl | Portland | OR | 97233.0 | 334900.0 | 4.0 | 2.5 | Gresham, Sandy, Troutdale, Corbett | ... | 19 | 0 | 28 | 41 | 50 | 50 | 50 | 13.978589 | 25.621265 | -495439.721119 |
1 | MLS Listing | Single Family Residential | 20028 NE Hoyt St | Portland | OR | 97230.0 | 349950.0 | 3.0 | 2.5 | Reeds Place | ... | 23 | 0 | 31 | 38 | 50 | 50 | 50 | 13.913465 | 24.726944 | -516614.867353 |
2 | MLS Listing | Single Family Residential | 711 SE 160th Ave | Portland | OR | 97233.0 | 358999.0 | 4.0 | 2.5 | Portland Southeast | ... | 16 | 0 | 34 | 47 | 50 | 50 | 50 | 14.644863 | 27.830024 | -528948.304911 |
3 | MLS Listing | Single Family Residential | 5536 SE 142nd Pl | Portland | OR | 97236.0 | 369800.0 | 4.0 | 2.5 | Portland Southeast | ... | 18 | 0 | 29 | 45 | 48 | 50 | 50 | 13.097669 | 25.943438 | -545169.484546 |
4 | MLS Listing | Single Family Residential | 15707 SE Flavel Dr | Portland | OR | 97236.0 | 379900.0 | 3.0 | 2.0 | Portland Southeast | ... | 13 | 0 | 17 | 44 | 10 | 50 | 41 | 14.254413 | 28.403598 | -559115.061609 |
5 rows × 36 columns
prop_df['scores'].hist(bins=50); # trailing ; suppresses matplotlib's prints
sns.jointplot('PRICE','scores', data=prop_df);
/Users/atma6951/anaconda3/envs/geosaurus_gold/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
From the chart above, it appears numeric columns with large values (such as Price) weild an undue importance on our model. To rectify this, we need to scale all numeric columns and normalize them with each other. The section below performs this and then tries to generate scores based on the scaled values.
Write unscaled data to disk¶
prop_df.to_csv('resources/houses_scores_unscaled.csv')
Scale data¶
Although price plays an important role while selecting properties, the range and valuds of the PRICE
column is much larger than any other. Thus, it influences more than its fair share. To resolve this, we scale the data using different techniques.
from sklearn.preprocessing import MinMaxScaler
mm_scaler = MinMaxScaler()
prop_df.columns
Index(['SALE TYPE', 'PROPERTY TYPE', 'ADDRESS', 'CITY', 'STATE', 'ZIP', 'PRICE', 'BEDS', 'BATHS', 'LOCATION', 'SQUARE FEET', 'LOT SIZE', 'YEAR BUILT', 'DAYS ON MARKET', 'PRICE PER SQFT', 'HOA PER MONTH', 'STATUS', 'URL', 'SOURCE', 'MLS', 'LATITUDE', 'LONGITUDE', 'SHAPE', 'grocery_count', 'restaurant_count', 'hospitals_count', 'coffee_count', 'bars_count', 'gas_count', 'shops_count', 'travel_count', 'parks_count', 'edu_count', 'commute_length', 'commute_duration'], dtype='object')
columns_to_scale = ['PRICE', 'BEDS', 'BATHS', 'SQUARE FEET', 'LOT SIZE',
'YEAR BUILT', 'HOA PER MONTH','grocery_count', 'restaurant_count', 'hospitals_count', 'coffee_count',
'bars_count', 'gas_count', 'shops_count', 'travel_count', 'parks_count',
'edu_count', 'commute_length', 'commute_duration']
scaled_array = mm_scaler.fit_transform(prop_df[columns_to_scale])
prop_scaled = pd.DataFrame(scaled_array, columns=columns_to_scale)
prop_scaled.head()
PRICE | BEDS | BATHS | SQUARE FEET | LOT SIZE | YEAR BUILT | HOA PER MONTH | grocery_count | restaurant_count | hospitals_count | coffee_count | bars_count | gas_count | shops_count | travel_count | parks_count | edu_count | commute_length | commute_duration | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.000000 | 0.333333 | 0.1 | 0.016024 | 0.023259 | 0.368421 | 0.00 | 1.0 | 1.0 | 0.000000 | 0.38 | 0.0 | 0.56 | 0.82 | 1.00 | 1.0 | 1.00 | 0.005581 | 0.009332 |
1 | 0.041222 | 0.166667 | 0.1 | 0.049981 | 0.046518 | 0.315789 | 0.00 | 1.0 | 1.0 | 0.166667 | 0.46 | 0.0 | 0.62 | 0.76 | 1.00 | 1.0 | 1.00 | 0.005553 | 0.008905 |
2 | 0.066007 | 0.333333 | 0.1 | 0.028233 | 0.069777 | 0.157895 | 0.00 | 1.0 | 1.0 | 0.000000 | 0.32 | 0.0 | 0.68 | 0.94 | 1.00 | 1.0 | 1.00 | 0.005865 | 0.010386 |
3 | 0.095590 | 0.333333 | 0.1 | 0.014498 | 0.069777 | 0.736842 | 0.00 | 1.0 | 1.0 | 0.166667 | 0.36 | 0.0 | 0.58 | 0.90 | 0.96 | 1.0 | 1.00 | 0.005204 | 0.009486 |
4 | 0.123254 | 0.166667 | 0.0 | 0.025181 | 0.093036 | 0.000000 | 0.17 | 1.0 | 1.0 | 0.000000 | 0.26 | 0.0 | 0.34 | 0.88 | 0.20 | 1.0 | 0.82 | 0.005698 | 0.010660 |
Apply scores on scaled data¶
prop_scaled['scores_scaled'] = prop_scaled.apply(set_scores, axis=1)
Check the influence of price on scores
sns.distplot(prop_scaled['scores_scaled'], bins=50)
/Users/atma6951/anaconda3/envs/geosaurus_gold/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
<matplotlib.axes._subplots.AxesSubplot at 0x1a216e6198>
sns.jointplot(x='PRICE', y='scores_scaled', data=prop_scaled)
/Users/atma6951/anaconda3/envs/geosaurus_gold/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
<seaborn.axisgrid.JointGrid at 0x1a206eab00>
After scaling, the scatter plot of PRICE
VS SCORES
appears random without much correlation. The histogram of scores also looks normally distributed. This is important as we want to consider all aspects of a house and weigh them according to their relative importance to the buyer. It is not much of a model if the scores are entirely based off one attribute (such as PRICE).
Inverse transform data¶
Since we made a copy of the DataFrame when we scaled, we don't need to inverse transfrom the scaled data. We can simply copy the scaled_scores
from this DataFrame and apply that to the original DataFrame
prop_df['scores_scaled'] = prop_scaled['scores_scaled']
prop_df.head()
SALE TYPE | PROPERTY TYPE | ADDRESS | CITY | STATE | ZIP | PRICE | BEDS | BATHS | LOCATION | ... | coffee_count | bars_count | gas_count | shops_count | travel_count | parks_count | edu_count | commute_length | commute_duration | scores_scaled | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | MLS Listing | Single Family Residential | 144 SE 191st Pl | Portland | OR | 97233.0 | 334900.0 | 4.0 | 2.5 | Gresham, Sandy, Troutdale, Corbett | ... | 19 | 0 | 28 | 41 | 50 | 50 | 50 | 13.978589 | 25.621265 | 7.516793 |
1 | MLS Listing | Single Family Residential | 20028 NE Hoyt St | Portland | OR | 97230.0 | 349950.0 | 3.0 | 2.5 | Reeds Place | ... | 23 | 0 | 31 | 38 | 50 | 50 | 50 | 13.913465 | 24.726944 | 7.563760 |
2 | MLS Listing | Single Family Residential | 711 SE 160th Ave | Portland | OR | 97233.0 | 358999.0 | 4.0 | 2.5 | Portland Southeast | ... | 16 | 0 | 34 | 47 | 50 | 50 | 50 | 14.644863 | 27.830024 | 7.323591 |
3 | MLS Listing | Single Family Residential | 5536 SE 142nd Pl | Portland | OR | 97236.0 | 369800.0 | 4.0 | 2.5 | Portland Southeast | ... | 18 | 0 | 29 | 45 | 48 | 50 | 50 | 13.097669 | 25.943438 | 8.036890 |
4 | MLS Listing | Single Family Residential | 15707 SE Flavel Dr | Portland | OR | 97236.0 | 379900.0 | 3.0 | 2.0 | Portland Southeast | ... | 13 | 0 | 17 | 44 | 10 | 50 | 41 | 14.254413 | 28.403598 | 5.162985 |
5 rows × 36 columns
sns.jointplot('PRICE', 'scores_scaled', data=prop_df)
/Users/atma6951/anaconda3/envs/geosaurus_gold/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
<seaborn.axisgrid.JointGrid at 0x1a21a4d7b8>
Sort by scores¶
prop_df_sorted = prop_df.sort_values(by='scores_scaled', ascending=False)
prop_df_sorted.head(3)
SALE TYPE | PROPERTY TYPE | ADDRESS | CITY | STATE | ZIP | PRICE | BEDS | BATHS | LOCATION | ... | coffee_count | bars_count | gas_count | shops_count | travel_count | parks_count | edu_count | commute_length | commute_duration | scores_scaled | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
87 | MLS Listing | Single Family Residential | 15986 SE Spokane Ct. Ave | Portland | OR | 97236.0 | 543900.0 | 4.0 | 3.5 | Portland Southeast | ... | 50 | 2 | 34 | 46 | 50 | 50 | 50 | 5.796321 | 16.509734 | 10.179443 |
170 | MLS Listing | Multi-Family (2-4 Unit) | SE Henderson St | Portland | OR | 97206.0 | 625000.0 | 6.0 | 6.0 | LENTS | ... | 50 | 1 | 50 | 40 | 50 | 50 | 50 | 8.380589 | 23.087985 | 10.174764 |
101 | MLS Listing | Single Family Residential | 8268 SE Yamhill St | Portland | OR | 97216.0 | 550000.0 | 7.0 | 4.0 | Portland Southeast | ... | 50 | 1 | 50 | 43 | 50 | 50 | 50 | 6.330796 | 16.910622 | 10.140356 |
3 rows × 36 columns
prop_df_sorted.reset_index(drop=True, inplace=True)
prop_df_sorted.head()
SALE TYPE | PROPERTY TYPE | ADDRESS | CITY | STATE | ZIP | PRICE | BEDS | BATHS | LOCATION | ... | coffee_count | bars_count | gas_count | shops_count | travel_count | parks_count | edu_count | commute_length | commute_duration | scores_scaled | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | MLS Listing | Single Family Residential | 15986 SE Spokane Ct. Ave | Portland | OR | 97236.0 | 543900.0 | 4.0 | 3.5 | Portland Southeast | ... | 50 | 2 | 34 | 46 | 50 | 50 | 50 | 5.796321 | 16.509734 | 10.179443 |
1 | MLS Listing | Multi-Family (2-4 Unit) | SE Henderson St | Portland | OR | 97206.0 | 625000.0 | 6.0 | 6.0 | LENTS | ... | 50 | 1 | 50 | 40 | 50 | 50 | 50 | 8.380589 | 23.087985 | 10.174764 |
2 | MLS Listing | Single Family Residential | 8268 SE Yamhill St | Portland | OR | 97216.0 | 550000.0 | 7.0 | 4.0 | Portland Southeast | ... | 50 | 1 | 50 | 43 | 50 | 50 | 50 | 6.330796 | 16.910622 | 10.140356 |
3 | MLS Listing | Single Family Residential | 6311 SE Tenino St | Portland | OR | 97206.0 | 479900.0 | 4.0 | 2.5 | Portland Southeast | ... | 50 | 2 | 44 | 48 | 50 | 50 | 50 | 7.299694 | 20.389635 | 10.035397 |
4 | MLS Listing | Multi-Family (2-4 Unit) | 2028 SE Harold St | Portland | OR | 97202.0 | 699900.0 | 5.0 | 4.0 | SELLWOOD - WEST MORELAND | ... | 50 | 2 | 40 | 45 | 50 | 50 | 50 | 3.710354 | 11.486135 | 9.958218 |
5 rows × 36 columns
Apply a rank for each property based on the scores¶
prop_df_sorted['rank'] = prop_df_sorted.index
prop_df_sorted.head(10)
SALE TYPE | PROPERTY TYPE | ADDRESS | CITY | STATE | ZIP | PRICE | BEDS | BATHS | LOCATION | ... | bars_count | gas_count | shops_count | travel_count | parks_count | edu_count | commute_length | commute_duration | scores_scaled | rank | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | MLS Listing | Single Family Residential | 15986 SE Spokane Ct. Ave | Portland | OR | 97236.0 | 543900.0 | 4.0 | 3.5 | Portland Southeast | ... | 2 | 34 | 46 | 50 | 50 | 50 | 5.796321 | 16.509734 | 10.179443 | 0 |
1 | MLS Listing | Multi-Family (2-4 Unit) | SE Henderson St | Portland | OR | 97206.0 | 625000.0 | 6.0 | 6.0 | LENTS | ... | 1 | 50 | 40 | 50 | 50 | 50 | 8.380589 | 23.087985 | 10.174764 | 1 |
2 | MLS Listing | Single Family Residential | 8268 SE Yamhill St | Portland | OR | 97216.0 | 550000.0 | 7.0 | 4.0 | Portland Southeast | ... | 1 | 50 | 43 | 50 | 50 | 50 | 6.330796 | 16.910622 | 10.140356 | 2 |
3 | MLS Listing | Single Family Residential | 6311 SE Tenino St | Portland | OR | 97206.0 | 479900.0 | 4.0 | 2.5 | Portland Southeast | ... | 2 | 44 | 48 | 50 | 50 | 50 | 7.299694 | 20.389635 | 10.035397 | 3 |
4 | MLS Listing | Multi-Family (2-4 Unit) | 2028 SE Harold St | Portland | OR | 97202.0 | 699900.0 | 5.0 | 4.0 | SELLWOOD - WEST MORELAND | ... | 2 | 40 | 45 | 50 | 50 | 50 | 3.710354 | 11.486135 | 9.958218 | 4 |
5 | New Construction Home | Single Family Residential | 16010 SE Spokane Ct | Portland | OR | 97236.0 | 518750.0 | 3.0 | 2.5 | Peach Tree Meadows | ... | 2 | 34 | 46 | 50 | 50 | 50 | 5.796321 | 16.509734 | 9.929172 | 5 |
6 | MLS Listing | Multi-Family (2-4 Unit) | 5850 SE 86th Ave | Portland | OR | 97266.0 | 699000.0 | 6.0 | 6.0 | LENTS | ... | 1 | 50 | 38 | 50 | 50 | 50 | 10.899918 | 21.144505 | 9.924611 | 6 |
7 | MLS Listing | Townhouse | 2022 SE Harold St | Portland | OR | 97202.0 | 699900.0 | 5.0 | 4.0 | SELLWOOD - WEST MORELAND | ... | 2 | 40 | 45 | 50 | 50 | 50 | 3.713178 | 11.513058 | 9.880673 | 7 |
8 | MLS Listing | Single Family Residential | 15965 SE Spokane Ct | Portland | OR | 97236.0 | 488750.0 | 3.0 | 2.5 | Portland Southeast | ... | 2 | 34 | 46 | 50 | 50 | 50 | 5.796321 | 16.509734 | 9.794684 | 8 |
9 | MLS Listing | Single Family Residential | 16136 SE Tenino St | Portland | OR | 97236.0 | 479900.0 | 3.0 | 2.5 | Portland Southeast | ... | 2 | 36 | 46 | 50 | 50 | 50 | 4.998670 | 13.217221 | 9.761623 | 9 |
10 rows × 37 columns
Visualize the top 50 properties¶
top_10_map = gis.map('Portland, OR')
top_10_map.basemap = 'gray'
top_10_map
MapView(basemap='gray', layout=Layout(height='400px', width='100%'))
prop_df_sorted.head(50).spatial.plot(map_widget = top_10_map,
renderer_type='c',
method='esriClassifyNaturalBreaks', # classification scheme
class_count=10, # between 1900 - 2000, each decade in a class
col='scores_scaled',
cmap='autumn', # matplotlib color map
alpha=0.7,
outline_color=[0,0,0,0])
/Users/atma6951/anaconda3/envs/geosaurus_gold/lib/python3.6/site-packages/arcgis/features/geo/_accessor.py:861: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy self._data[col] = self._data[col] /Users/atma6951/anaconda3/envs/geosaurus_gold/lib/python3.6/site-packages/arcgis/features/geo/_accessor.py:1968: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy self._data['OBJECTID'] = list(range(1, self._data.shape[0] + 1))
True
Investigate statistical distribution facilities in the top 50 shortlist¶
interesting_columns=['grocery_count', 'restaurant_count', 'hospitals_count', 'coffee_count',
'bars_count', 'gas_count', 'shops_count', 'travel_count', 'parks_count',
'edu_count', 'commute_length', 'commute_duration','PRICE','BEDS','BATHS','YEAR BUILT','SQUARE FEET']
ax_list = prop_df_sorted[interesting_columns].iloc[:49].hist(bins=25, layout=(5,4), figsize=(15,15))
plt.tight_layout()
How is rank correlated with location properties of houses?¶
In the charts below we attempt to find if there exists a correlation between different facilities.
column_set1 = ['hospitals_count','commute_length','commute_duration',
'gas_count', 'shops_count', 'rank']
column_set2 = ['rank','PRICE','BEDS','BATHS','YEAR BUILT','SQUARE FEET']
grd = sns.pairplot(data=prop_df_sorted[column_set1].iloc[:49])
plt.title('How is rank correlated with location properties of a house?')
Text(0.5,1,'How is rank correlated with location properties of a house?')